Acetylenic compounds as key intermediates in heterocyclic synthesis: a route to functionalized naphtho[2,3-h]quinoline-7,12-diones

Mark S. Shvartsberg,* Igor I. Barabanov and Lidiya G. Fedenok

Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 383 235 2350; e-mail: shvarts@kinetics.nsk.su

Addition of primary and secondary amines to ethyl (1-amino-9,10-anthraquinon-2-yl)propiolate and cyclization of the resulting adducts to 2-substituted 4-dialkyl(or alkyl)aminonaphtho[2,3-h]quinoline-7,12-diones and 4-dialkyl(or alkyl)amino-1,2-dihydronaphtho[2,3-h]quinoline-2,7,12-triones are reported.

A variety of biologically active and other potentially useful compounds include the quinoline nucleus. 1,2 For the last two decades heteroannulation processes based on transition metal catalysed reactions have been applied to the synthesis of quinolines. 3–5 One of the variants of this methodology involves *vic*-acetylenylaminoaromatic compounds as key intermediates which are prepared by Pd- or/and Cu-catalysed cross-coupling of the respective *ortho*-iodoanilines with terminal acetylenes. 6–10

In this paper we report a route to the synthesis of hitherto unknown 2-functionalized 4-dialkyl(or alkyl)aminonaphtho-[2,3-h]quinoline-7,12-diones 1 using ethyl (1-amino-9,10-anthraquinon-2-yl)propiolate 2 as the key intermediate. The general plan of the synthesis is represented below (Scheme 1).

Scheme 1

Acetylenic quinones appertain to a specific group of acetylenic derivatives. In this work some points concerning the regio- and stereoselectivity of nucleophilic addition of amines to the triple bond of the ester 2 have been revealed, conditions for cyclizing the adducts have been determined and a simple procedure for the direct cross-coupling of 1-amino-2-iodo-9,10-anthraquinone 4 with ethyl propiolate 5 has been developed.

The Pd-catalysed cross-coupling reaction of aromatic halides with terminal acetylenes 11 appeared to be an effective method of preparing the key intermediate **2**. However, it is known that this condensation with the acetylenic ester **5** under normal conditions fails to yield cross-coupling products. 12 Taking into account the heightened reactivity of 2-iodo-9,10-anthraquinones and the sensitivity of **5** towards amines we replaced Et_3N commonly used as a base and a solvent in this reaction by an aqueous solution of $K_2\text{CO}_3$ and dioxane. Under the modified conditions **4** readily reacted with **5** to give $\mathbf{2}^\dagger$ in 74% yield (Scheme 2).

To form the appropriately-substituted pyridine ring, amines **6a–c** were added to acetylenic ester **2** (dioxane, 80 °C, 4–16 h). The acetylene **2** contains two substituents activating the triple

bond – the ethoxycarbonyl group and the anthraquinone nucleus, which orient the nucleophile to different carbon atoms. Indeed, two types of compounds, adducts $\bf 3a$ – $\bf c$ as the main products (yields 60–66%) and 3-aminonaphthoquinolones $\bf 8a$ – $\bf c$ (yields 12–18%), the latter obviously due to the lactanization of the regioisomeric adducts $\bf 7a$ – $\bf c$, were formed. Compounds $\bf 3$ and $\bf 8$ were easily separated by column chromatography on $\bf Al_2O_3$.

It was found that $\bf 3a-c$ could be cyclized into 2-chloronaphthoquinolines $\bf 9a-c$ (yields $\bf 40-67\%$) upon heating with POCl₃ in dioxane for 1.5–5.5 h at 80 °C (method A). Also $\bf 3a-c$ undergo base-catalysed cyclization (KOH, dibenzo[18]-crown-6, benzene, 20 °C) to aminolactams $\bf 10a-c$ in $\bf 52-97\%$ yields (method B). In their turn, lactams $\bf 10$ can be readily transformed into chloroquinolines $\bf 9$ by heating with POCl₃ in dioxane, as shown for $\bf 10a$ (yield of $\bf 9a$ 67%). Continuous refluxing of $\bf 10b$ with HC(OEt)₃ in the presence of $\bf H_2SO_4$ in benzene leads to 2-ethoxyquinoline $\bf 11b$ in $\bf 54\%$ yield. A mixture of the corresponding quinolone $\bf 10a$, $\bf b$ and 2-ethoxyquinoline $\bf 11a$, $\bf b$ in the ratio of $\bf \sim 2:1$ can be obtained in 90% yield by acid-catalysed cyclization of $\bf 3a$, $\bf b$ in benzene at 20 °C (method C).

The ability of adducts 3 and 7 to undergo cyclization under mild conditions apparently implies the *syn*-addition of amines 6 to the triple bond of 2.

Nucleophilic substitution of the labile chlorine atom in naphthoquinolines **9** is a route to various 2-substituted 4-dialkyl(or alkyl)aminonaphtho[2,3-h]quinoline-7,12-diones. For example, compounds **12–14** were prepared in 56–83% yields

[†] All new compounds gave satisfactory microanalytical and spectroscopic data. For **2**: mp 179–180 °C (from benzene–hexane);
¹H NMR (90 MHz, CDCl₃) δ 1.38 (t, 3H, J 7.7 Hz, CH₃), 4.32 (q, 2H, J 7.7 Hz, CH₂), 7.52 (d, 1H, J 9.2 Hz, H³⁽⁴⁾), 7.73 (d, 1H, J 9.2 Hz, H⁴⁽³⁾), 7.70–7.95 (m, 2H, H^{6,7}), 8.15–8.40 (m, 2H, H^{5,8}); IR (CHCl₃) ν_{max} /cm⁻¹ 1650, 1680 (C=O), 1715 (COOEt), 2220 (C≡C), 3340, 3495 (NH₂).

[‡] Examples of typical ¹H NMR spectra for **3** and **8–11** are given below. For **3a**: (90 MHz, CDCl₃) δ 0.85–1.25 (m, 9H, CH₃), 2.95–3.40 (m, 4H, NCH₂), 3.89 (q, 2H, *J* 7.7 Hz, OCH₂), 4.90 (s, 1H, =CH), 7.02 (br. s, 2H, NH₂), 7.27 (d, 1H, *J* 8.3 Hz, H³⁽⁴⁾), 7.69 (d, 1H, *J* 8.3 Hz, H⁴⁽³⁾), 7.60–7.85 (m, 2H, H^{6.7}), 8.10–8.40 (m, 2H, H^{5.8}).

For **8a**: 1.27 (t, 6H, J 7.7 Hz, CH₃), 3.60 (q, 4H, J 7.7 Hz, CH₂), 6.62 (s, 1H, H⁴), 7.62 (d, 1H, J 9.3 Hz, H⁵⁽⁶⁾), 7.98 (d, 1H, J 9.3 Hz, H⁶⁽⁵⁾), 7.65–7.90 (m, 2H, H^{9,10}), 8.15–8.40 (m, 2H, H^{8,11}), 12.67 (br. s, 1H, NH).

For $\bf 9a$: 1.13 (t, 6H, $\it J$ 7.7 Hz, CH₃), 3.32 (q, 4H, $\it J$ 7.7 Hz, CH₂), 6.82 (s, 1H, H³), 7.55–7.80 (m, 2H, H^{9,10}), 8.00–8.35 (m, 4H, H^{5,6,8,11}).

For **9b**: 1.60-2.10 [m, 6H, $-(CH_2)_3-$], 3.10-3.45 (m, 4H, CH_2NCH_2), 6.93 (s, 1H, H³), 7.65-7.95 (m, 2H, H^{9.10}), 8.15-8.45 (m, 4H, H^{5.6,8,11}).

For **9c**: 0.97 (t, 3H, J 7.6 Hz, CH₃), 1.20–1.95 (m, 4H, CH₂CH₂), 3.10–3.40 (m, 2H, NCH₂), 5.40 (br. m, 1H, NH), 6.45 (s, 1H, H³), 7.60–7.90 (m, 2H, H^{9,10}), 7.95–8.35 (m, 4H, H^{5,6,8,11}).

For **10a**: 1.16 (t, 6H, J 7.7 Hz, CH₃), 3.26 (q, 4H, J 7.7 Hz, CH₂), 6.15 (s, 1H, H³), 7.65–7.95 (m, 2H, H^{9,10}), 7.95–8.40 (m, 4H, H^{5,6,8,11}), 12.60 (br. s, 1H, NH).

For **11a**: 1.12 (t, 6H, J 7.7 Hz, CH₃–C–N), 1.50 (t, 3H, J 7.7 Hz, CH₃–CO), 3.30 (q, 4H, J 7.7 Hz, CH₂N), 4.73 (q, 2H, J 7.7 Hz, CH₂O), 6.50 (s, 1H, H³), 7.65–7.90 (m, 2H, H^{9,10}), 8.10–8.40 (m, 4H, H^{5,6,8,11}).

Scheme 2

by heating **9b** for 5–180 min at 80–100 °C with piperidine, BuSH/Na₂CO₃ in dioxane and NaCH(COOEt)₂, respectively.

In conclusion, the addition of HNRR¹ to ethyl (1-amino-9,10-anthraquinon-2-yl)propiolate **2** and subsequent cyclization of the adducts **3** to form a 2-chloro-4-dialkyl(or alkyl)amino-substituted pyridine ring, followed by nucleophilic substitution of the chlorine atom in this heterocycle, offer a novel route to the synthesis of 2-functionalized 4-dialkyl(or alkyl)aminonaphtho-[2,3-h]quinoline-7,12-diones **1**.

Support from the Russian Foundation for Basic Research through grant no. 95-03-08910a is gratefully acknowledged.

References

- P. A. Claret, Quinolines, in Comprehensive Organic Chemistry, eds.
 D. H. R. Barton and W. D. Ollis, Pergamon Press, Oxford, 1979, vol. 4, p. 155.
- 2 F. S. Yates, Pyridines and their Benzo Derivatives: Applications, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 2, p. 395.
- 3 L. S. Hegedus, G. F. Allen, J. J. Bozell and E. L. Waterman, J. Am. Chem. Soc., 1978, 100, 5800.
- 4 R. C. Larock and S. Babu, Tetrahedron Lett., 1987, 28, 5291.
- 5 R. C. Larock and M.-Y. Kuo, Tetrahedron Lett., 1991, 32, 569.

- 6 M. S. Shvartsberg, A. V. Piskunov, M. A. Mzhel'skaya and A. A. Moroz, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 1423 (*Russ. Chem. Bull.*, 1993, 42, 137).
- B. E. Zaitsev, V. V. Davidov, M. G. Sarabia, M. S. Shvartsberg,
 M. A. Mzhel'skaya and G. V. Sheban, *Zh. Obshch. Khim.*, 1993, **63**, 389 (*Russ. J. Gen. Chem.*, 1993, **63**, 276).
- S. Torii, H. Okumoto and L. H. Xu, *Tetrahedron Lett.*, 1991, 32, 237.
- 9 S. Torii, L. H. Xu, M. Sadakane and H. Okumoto, *Synlett.*, 1992, 513.
- N. G. Kundu, J. S. Mahanty, P. Das and B. Das, *Tetrahedron Lett.*, 1993, 34, 1625.
- 11 R. Rossi, A. Carpita and F. Bellina, Org. Prep. Proced. Int., 1995, 27, 127.
- 12 T. Sakamoto, F. Shiga, A. Yasuhara, D. Uchiyama, Y. Kondo and H. Yamanaka, *Synthesis*, 1992, 746.

Received: Moscow, 8th January 1997 Cambridge, 9th March 1997; Com. 7/00344G